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Abstract

Maize (Zea mays L.) landraces have the highest genetic variation and adaptation to the natural and anthropological
environment where they have evolved. Surveying both qualitative and quantitative morphological traits of existing
landraces may be useful in maintaining their genetic diversity and preserving them from genetic erosion. Our
research deals with the morpho-phenological and agronomic characterization of a flint maize landrace, named
‘Nostrano di Storo’, still grown in an inland hilly environment in the low valley of Chiese River in Trentino,
North-Eastern Italy. The majority of plants from twenty field populations proved to belong, with few exceptions
(NSt2, NSt9, NSt11), to a single population. It means that the plant material long grown in this area and
maintained by local farmers through yearly selection forms a single landrace within which some populations (i.e.
NSt1, NSt3, NSt4, NSt7, NSt10, NSt18, NSt19, NSt20) could be considered as most representative and taken as
‘core’. This is supported by the fact that the genetic variability was much higher within than between field
populations: half of the plant and ear traits investigated did not show any significant difference between
populations whereas all traits but two showed highly significant differences within populations. Selection carried
out over the years by each farmer according to his own criteria produced little genetic differentiation within the
original population. Gene flow among farmer populations, most likely occurred through both pollen dispersion to
neighboring cultivated fields and seed exchange among farmers, may help to explain the low genetic differentia-
tion. This information is useful for both planning conservation and recognizing the landrace as a unique
germplasm source of specific geographic origin.

Introduction

Maize (Zea mays L.) is one of the most important
crops in Italian agriculture. The species was intro-
duced in the national cultivation system approximate-
ly four centuries ago and grown mainly for human
consumption.

Since then, a number of landraces have been de-
veloped in order to meet specific needs of cultivation
and utilization and to overcome environmental con-
straints of different areas. Photoperiod, temperature
and humidity associated with altitude where the maize
was grown have been the basic factors in the differen-
tiation and development of always new landraces as
well as hybridization brought about by continuous

exchange and trade (Trifunovic 1978; Bosch et al.
1997). These landraces were maintained by farmers as
open-pollinated populations and thus each of them
represented a collection of highly heterozygous and
heterogeneous plants. Although a considerable range
of variation within each population was present, a
between population differentiation was detectable for
several distinctive traits as a consequence of both
natural and human selection pressure.

Within the last few decades, the Italian agricultural
scenery has profoundly changed and the subsistence
mixed farming unit is now transformed into an inten-
sive monoculture (Bertolini et al. 1998).

At present, a small number of populations of flint
maize (Z. mays L. convar. mays) can be found under
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very particular agricultural situations or in marginal
areas, such as alpine valleys, on small fields tradition-
ally managed according to low-input agronomic prac-
tices, and with production exclusively addressed to
human consumption. The agricultural environment,
together with the traditional diet of these regions,
ensures preservation of some landraces and limits
diffusion of modern hybrids. Unfortunately, many
populations were lost before it was realized that they
were important sources of germplasm.

Many maize breeders are concerned that genetic
diversity within this species has been decreasing at an
alarming rate as a consequence of modern hybrids and
agricultural systems. The use of a limited number of
elite lines and synthetics heightens the risk of genetic
uniformity in commercial maize production fields
(Hallauer et al. 1988). Thus, maize breeders have
recently become more aware of the need for both
maintaining genetic diversity among hybrid varieties
and improving the management of genetic resources
through the conservation of landraces (Goodman
1994). From this comes the renewed interest for in
situ conservation of the landraces (Brush 1995;
Louette et al. 1997) not only in order to preserve
important sources of genetic material for breeding,
but also to allow their valorization as essential com-
ponents of sustainable agriculture, as Agenda 21 has
stressed.

Landraces are the cultivated maize material with
the highest genetic variation as well as with the best
adaptation to the natural and anthropological environ-
ment where they have evolved (Maxted et al. 1997).
They contain locally adapted alleles and represent an
irreplaceable bank of highly co-adapted genotypes
(Qualset et al. 1997). Information on both qualitative
and quantitative morphological traits of existing
maize landraces may be useful in maintaining their
genetic variability and preserving them from genetic
erosion.

A survey of Italian maize landraces from Northern,
Central and Southern regions cultivated up to 1960s
has been reported by Lanza (1961) and Brandolini et
al. (1967). Despite their potentiality for maize breed-
ing, genetic characterization of landraces has been
ignored. In the past some comparative studies have
however been conducted at the morpho-agronomic
level (Bonciarelli 1961; Lorenzoni et al. 1965; Bran-
dolini 1970; Camussi 1979; Camussi et al. 1980).
Nowadays, after years of lack of interest towards the
so-called old local varieties, this valuable source of
maize germplasm has been rediscovered and ex-

ploited as a niche crop suitable for the cultivation of
marginal lands.

Agronomic evaluation and genetic characterization
are essential to the effective use of maize resources
(Lucchin et al. 1998; Barcaccia et al. 1999). When in
situ conservation is pursued, this information should
also be related to the need of monitoring changes
which might occur in the landrace in relation to
population dynamics, genetic erosion, and gene flow.

Our research deals with the morpho-phenological
and agronomic characterization of an old flint maize
local variety, named ‘Nostrano di Storo’, still grown
in an inland hilly environment in the low valley of
Chiese River in Trentino, North-Eastern Italy. The
purpose of the work was to determine whether this
maize material represents a single landrace or if the
selection made by each farmer according to his own
criteria has caused a differentiation within the original
population bearing to a composite with highly distinct
sub-populations. This information will be useful for
both planning in situ or ex situ conservation and
recognizing the landrace as a unique germplasm
source with specific geographic origin.

Materials and methods
Plant material

The object of this study is a flint maize landrace
named ‘Nostrano di Storo’ (in short NSt) grown at
Storo (409 m above sea level) in the low Chiese
Valley (Province of Trento, in North-Eastern Italy)
over an area of 200-250 ha.

The whole landrace population was sampled taking
four ears at random among those that each of twenty
farmers had previously singled out for seed according
to his own criteria of correspondence to the ‘Nostrano
di Storo’ standard phenotype for a total of 80 ears.

The 20 field populations were sown in May 1997
according to a randomized complete-block ex-
perimental design with three replications. Four com-
mercial hybrids of maturity class from 200 to 500
were also included as check for earliness and morpho-
agronomical traits. Plot size was 22.4 m” and every
plot consisted of 4 ear-to-row progenies 70 cm apart
and 8 m long. The density was 6 plants per m’.
Fertilizer, equivalent to 50-120—150 kg ha~' of N-
P,0,-K,0, was applied according to standard local
practices before hand-sowing. Weed control was per-
formed by isoxaflutole 75 g ha™' and pendimethalin



330 g ha™' in pre-emergence. Escaped weeds were

controlled by hand hoeing.
During the growing season observations were made

as follows:
a) on a row basis: number of days from sowing to
tasselling and to male flowering (50% of plants
showing tassel exertion and anther shed, respec-
tively); number of days to female flowering (50%
of primary ears having 1 cm of exposed silks); silk
colour, recorded as red or white (%); number of
ear shoots per plant; plants with no ear (%); grain
yield (t ha™") and cob weight (g m~°); European
corn borer (Ostrinia nubilalis Hubn.) resistance
and smut (Ustilago maydis (DC.) Cda.) resistance,
recorded at physiological maturity as percentage of
plants showing damages or infection, respectively;
number of broken and lodged plants at harvesting;
meal quality as protein (nitrogen X 6.25), crude
fibre, fat, ash and carbohydrate content (% on a dry
weight basis);
b) on three plants taken at random within each row,
excluding plants at each end of the row: tassel
length and apex length (cm); number of branches
per tassel; insertion angle of tassel branches (score
1t09, 1 = narrow angle, =5° 9 = wide angle,
>90°); primary branch habit (score 1 to 9, 1 =
straigth branches, 9 = very crooked branches); leaf
insertion angle (score 1 to 9, 1 = narrow angle,
+5° 9 = wide angle, >90°) and growth habit of
leaves above the ear (score 1 to 9, 1 = straigth
leaves, 9 = patent leaves) at flowering;
¢) at milk stage, on ten consecutive plants in each
row: plant height (cm) to the flag leaf insertion;
culm diameter (mm) at the second internode; api-
cal ear height (cm) at the ear insertion node;
d) after harvest, on five ears taken at random from
each progeny row: ear length (cm); ear diameter
(mm); cob diameter (mm); cob colour (0 = red, 1
= white); apical ear sterility (mm); number of rows
per ear; 100 kernel weight (g).

For hybrids all observations were made on a plot
basis.

Data analysis

Statistical analysis has been performed according to a
nested multiway analysis of variance (ANOVA) pro-
cedure based on random effects (Steel and Torrie
1980), using the CoStat software (CoHort Software,
Minneapolis, MN).
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The assessed sources of variation were blocks (2
df), field populations (19 df), rows within populations
(60 df), blocks per populations interaction (38 df),
experimental error (120 df). For traits with multiple
observations within each row, the sampling error sum
of squares was estimated (320 df for ears, 160 or 720
df for plants). When the experimental error was not
significant at the F test, a pooled error mean square
was used for testing the rows within-population ef-
fects.

Variation within populations for the descriptive
traits was assessed by the Shannon-Weaver Diversity
Index (SDI) computed using the formula:

SDI=— 2 p; log. (p))
i=1

where s is the number of phenotypic classes for a
given trait, obtained by subdividing the range of
variation into three classes with the same width or by
using the two alternative descriptor states, and p, is
the proportion of the total number of data in the i"
class (Jain et al. 1975). The index was standardized to
keeps its value in the range O to 1, by dividing the
value by log.s (Yu et al. 1996).

Narrow-sense heritability (hf\l) of some plant and
ear traits was estimated on the basis of linear correla-
tion coefficients between mother plant and offspring
for the measured trait. For each ear trait, individual
measurements taken at the single plant level were
used, while mean row values over all replicates were
adopted for the plant traits. Observations of the quan-
titative traits were carried out during 1998 on a total
of 80 offsprings originated by as ears taken at random
from the ear-to-row progenies grown in 1997.

Genetic distance estimates between landrace popu-
lations were calculated in all possible pair-wise com-
parisons using the Euclidean coefficient for quantita-
tive traits:

Eij = [zk(xki+xkj)2]1/2

where x,; and x,; represent the quantitative trait
values of the pair of objects (i and j) considered.
Thus, E;; = 0 indicates complete identity, whereas E;;
> 0 indicates diversity. The mean genetic distances of
each population from the landrace as a whole were
obtained by averaging between-population estimates
using the whole set of populations belonging to the
landrace. Interval measurement data were stan-
dardized according to the following linear transforma-
tion: y' = (y — y)/sd, i.e. the mean value of each
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variable was subtracted and the difference divided by
the standard deviation. Cluster analysis was per-
formed using the unweighted pair-group arithmetic
average method (UPGMA), and dendrograms of all
populations were constructed from the standardized
symmetrical mean genetic distance matrix.

Standardized quantitative trait values were subject-
ed to principal components analysis (PCA) to obtain
information on the traits most effective in discriminat-
ing the farmer populations. Common components
coefficients, eigenvalues, and relative and cumulative
proportions of the total variance expressed by single
traits were calculated. The first two components hav-
ing maximum variance were selected for the ordina-
tion analysis: eigenvectors from the matrix of correla-
tion among variables were extracted and used for the
projection of population centroids into a 2-dimension-
al plot.

All calculations were made using the appropriate
options of the Numerical Taxonomy and Multivariate
Analysis System (NTSYS-pc) Version 1.80 (Rohlf
1993).

Results
Morpho-phenological and agronomic traits

Information on the variables analyzed in the 20 popu-
lations of the landrace ‘Nostrano di Storo’ including
mean values, coefficients of variability and among
populations least significant differences are reported
in Table 1.

All the landrace populations supplied by local
farmers showed considerable variability for the ex-
amined morpho-phenological and agronomic traits.
Marked differences among populations were related
to a single or a few populations clearly distinguishable
for some of the traits investigated.

On the basis of male and female flowering, the
landrace populations showed a vegetative cycle length
comparable to 300 (79.4 days) and intermediate be-
tween 400 and 500 (81.7 and 86.7 days) class hybrids,
respectively. Pollen dispersion and silk emission re-
quired on average 80.3 = 0.4 and 84.6 = 0.4 days,
respectively, and so a marked proterandry (4 days)
was observed over the landrace as a whole (Table 1).
This behavior was not observed for commercial hy-
brids used as standards.

The landrace showed to be characterized by an
average plant height of 241 = 1.7 cm and by an ear

insertion height of 151 = 1.8 cm on average (Table
1). The maximum and minimum values for these
traits were scored by NSt1 (258 cm and 165 cm) and
NSt21 (229 cm and 135 cm), respectively. The stalk
diameter was, on average, 17.4 = 0.2 mm varying
from 16.0 mm (NSt13) and 18.7 (NSt12). As far as
the 300 class hybrid used as standard, the plant height
was similar (240 cm), the ear insertion height was
much lower (98 cm), while the stalk diameter was a
little bigger (18.7 mm).

The primary branch habit of the tassel was scored
as moderately crooked (6.14 = 0.13) while the leaf
insertion showed a quite narrow angle (score = 4.32
* 0.10).

The kernel yield was on average equal to 3.96 =
0.06 t/ha, ranging from 3.38 t/ha of NSt14 and 4.51
t/ha of NStl (Table 1) and was always lower then
that of hybrids ranging from 5.79 t/ha (200 class) to
8.94 t/ha (500 class). Moreover, the 100 kernel
weight of landrace populations was much lower than
that of hybrids (159 * 0.3 g vs. 274 = 1.0 g,
respectively).

Concerning kernel yield components and yield
influencing factors, the ear length of landrace popula-
tions was similar to those of hybrids (17.3 = 0.2 cm
vs. 16.4 = 0.4 cm), whereas the number of rows per
ear was lower (13.8 = 0.2 vs. 15.3 £ 0.6), and the
length of apical sterility of landrace populations was
higher than that of hybrids (7.9 = 0.4 mm vs. 4.8 *
1.8 mm). Average values of ear thickness were 34.0 *
0.2 mm for landrace populations and 44.7 = 1.8 mm
for hybrids while those of cob thickness were 23.5 *
0.3 mm and 26.7 = 0.7 mm, respectively.

Silk and tassel variability as well as ear mor-
phological variants of the landrace ‘Nostrano di
Storo’ are shown in Figure 1.

As much as 4.71% of plants yielded no ears,
ranging from 2.62% of NSt10 to 8.04% of NSt15.
Despite this, the average number of ears per plant was
1.02 due to the presence of plants with two ears. The
number of ears per plant scored by hybrids was 0.99.

It is interesting to note that over all landrace
populations a proportion of plants varying between
5.39% of NSt17 to 20.61% of NSt8 showed red silks,
with an average value of 13.26%.

The incidence of the European corn borer attack in
the landrace populations was as high as 3.59 * 0.42%
and 1.18 * 0.41% in the hybrids. A high suscep-
tibility to corn smut was recorded with an average
proportion of infected plants of 55.2 = 4.3%, ranging
from 25.0% (NSt21) to 91.7% (NSt19), whereas only
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Figure 1. Examples of the phenotypic variability of silks (a—e), tassels (f-i), and ears (j) of the maize landrace ‘Nostrano di Storo’.

the 400 class hybrid showed some infected plants
(16.7%).

Heritability of distinctive landrace traits

High narrow-sense heritability (hlz\l) estimates were
calculated for distinctive plant and ear traits such as
ear insertion height (1.10), cob colour (0.76) and
thickness (0.70), number of rows per ear (0.70),
anther and silk colour (0.94 and 1.76, respectively)
and kernel colour (0.52). Although important yield
components like ear length and thickness, and 100
kernel weight gave heritability estimates of 0.62, 0.52
and 0.42, respectively, kernel yield had a virtually
null heritability (0.03). Heritability of pollen disper-

sion and silk emission were 0.44 and 0.52, respective-
ly, suggesting that proterandry is a distinctive re-
productive behaviour of the ‘Nostrano di Storo’ land-
race populations.

Qualitative traits: meal composition

The protein content was on average equal to 10.43%,
varying from 11.03% of NSt13 to 9.36% of NSt2
(Table 1). The crude fibre (2.13%, on average) and
ashes (1.56%, on average) showed the highest relative
variation (CVs were 18.8% and 19.8%, respectively):
the highest and lowest contents of crude fibre were
observed for NSt7 (1.84%) and NSt18 (2.60%) while
the same figures for ash were scored by NSt4 (1.48%)
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Table 3. Euclidean genetic distance (EGD) matrix of landrace populations based on 34 morpho-agronomic traits.

NStl  NSt2 NSt3 NSt4 NSt5 NSt6

NSt7 NSt8 NSt9 NStl0 NStI1 NStI2 NStI3 NStl4 NStI5S NStl7 NStI8

NSt19 NSt20 NSt21

MeanEGD 8.099 9.266 7.527 7.328 9.015 7.952 7.083 7.834 9.910 7.362
minimum ~ 5.518 7.705 5.557 5.609 7.013 5877 5514 5877 7.229 5.186
maximum 11.524 10.714 10.255 8.934 12.363 11.587 9.010 9.910 12.363 9.413

9.069 8137 8593 8584 8758 8.101  7.603
7088 6319 6718 6111 5841 5840 5518 4.880 4.880 5.840
11.755 10.165 10.714 11.529 10.635 10.124 10.301

7273 7110 7.846

9.782  9.172 9.188

Euclidean genetic distance estimates
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Figure 2. Dendrogram of the ‘Nostrano di Storo’ farmer populations constructed according to the UPGMA method and based on the Euclidean
genetic distance estimates. a) dendrogram based on the 34 observed traits; b) dendrogram based on the 5 ear traits on which the selection by

farmers is made.

and NSt15 (1.81%). Carbohydrates ranged from
79.91% of NSt15 to 82.41% of NSt2 (80.9% on
average). No significant differences between popula-
tions were observed for each of the five qualitative
traits.

Within vs. between population differences

All morpho-phenological and agronomic traits but
two (plants with no ear and susceptibility to corn

borer) showed highly significant differences within
populations.

It is interesting to note that differences for im-
portant agronomic and morphologically distinctive
traits like plant height, stalk diameter, plant growth
habit, apical sterility, kernel yield, and protein content
were highly significant within populations only. On
the whole, between population differences were sig-
nificant for 14 out of 34 traits. As far as qualitative
traits are concerned, differences in protein, fat, and
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Table 4. Correlation matrix of seven principal components and quantitative traits of landrace populations with Eigen values, relative and
cumulative proportion of total variance.

Traits Common principal component coefficients
1st 2nd 3rd 4th 5th 6th 7th

Tassel emission 0.884 0.323 0.013 0.208 0.189 0.122 0.835
Silk emission 0.083 0.049 0.067 0.062 0.036 0.035 —0.267
Pollen dispersion 0.872 0.351 —0.061 0.201 0.167 0.118 0.527
Ear length 0.101 0.095 —0.018 0.085 0.052 —0.032 0.219
Red silk 0.815 0.470 0.115 0.112 0.132 0.151 0.546
Plant height 0.042 —0.101 —0.025 —0.185 —0.045 —0.003 0.067
Ear insertion height 0.859 —0.004 —0.005 0.080 —0.271 —0.106 0.424
Kernel yield —0.327 0.235 —0.090 —0.031 —0.018 0.004 0.261
Cob weigth 0.542 0.532 0.246 —0.351 —0.439 —0.121 0.333
Smut infection 0.106 —0.075 0.040 0.079 —0.089 —0.002 0.131
Apex lenght 0.726 —0.476 0.161 0.120 0.240 —0.332 0.448
Crude fibre —0.008 0.034 0.183 —0.022 —0.048 —0.007 —0.112
Eigen values observed 5.528 1.790 1.445 1.270 0.746 0.491 0.358
Relative proportion of total variance 46.07 14.91 12.04 10.58 6.22 4.09 2.99
Proportions of variance expected 25.86 17.53 13.36 10.58 8.49 6.83 5.44
Cumulative proportion of total variance 46.07 60.98 73.02 83.61 89.82 93.91 96.90

carbohydrates content were significant at within popu-
lations only, while crude fibre and ash content did not
show significant differences either within nor between
populations.

Altogether, the SDI values (Table 2) averaged over
all descriptive traits are similar for all populations,
ranging from 0.796 (NSt8) to 0.849 (NSt2). Never-
theless single values show that phenotypic variability
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Figure 3. Genetic distances among ‘Nostrano di Storo’ farmer
populations. The centroids were plotted according to the first two
coordinates with the UPGMA method.

is not equally present in all populations for the same
trait or for all traits in the same population. For
instance, NSt9 shows particularly low values for both
male (0.657) and female (0.657) flowering date,
apical sterility (0.154), ear length (0.679), and num-
ber of rows per ear (0.582). Among the ear traits, the
number of rows per ear varies from 0.531 (NSt10) to
0.976 (NSt19).

Cluster analysis and genetic distances

Quantitative trait data were used for defining a matrix
of the genetic distances between landrace populations.
The average genetic distance over all landrace popula-
tions was 8.122 = 0.103 (Table 3). Based on pair-
wise comparisons the most similar populations were
NSt19 and NSt20 (4.889), NSt10 and NSt20 (5.186)
while the most dissimilar populations were NSt5 and
NSt9 (12.363).

The dendrogram (Figure 2a) evidence that 6 popu-
lations are tightly grouped and clearly separated from
all the others. It is interesting to note that NSt9,
NSt11, and NSt2 are the most distant ones from the
core of the landrace. Their mean genetic distances
were 9.910, 9.069, and 9.266 respectively (Table 3).

Dendrogram in Figure 2b, based on the 5 ear traits
and on lower euclidean genetic distance estimates,
shows a quite different clustering thus modifying the
composition of the group of populations identifiable
as the most similar ones.



324

Principal component analysis and most
discriminant traits

The correlation matrix of the seven principal com-
ponents is reported in Table 4.

The characters that displayed the best discriminat-
ory ability and utility for a morpho-agronomic charac-
terization were: tassel and silk emission, pollen dis-
persion, ear length, silk colour, plant height, ear
insertion height, cob weight, tassel apex length, corn
smut susceptibility and crude fibre content of meal.

The first four components with eigenvalues greater
than 1 were able to explain 83.61% of the total
variation. In particular, the first component, which
explains 46.07% of the total variation, was positively
and strongly associated with tassel emission, pollen
dispersion, and ear insertion height, and in decreasing
importance, with red silk colour, apex length and cob
weight, while was negatively associated with kernel
yield (Table 4). This means that populations with high
values of component 1 have a longer growing cycle,
highly inserted ears, and lower kernel yields. The
second component, which explains 14.91% of the
total variation, was positively, but moderately associ-
ated with cob weight and red silk, and negatively
associated with tassel apex length. Populations with
high component 2 are therefore characterized by high
cob weight and short tassel apex.

The scatter diagram showing the separation of
landrace populations according to the first two coordi-
nates is reported in Figure 3.

Discussion

The Italian landrace ‘Nostrano di Storo’ is a type of
flint maize with very brilliant orange kernels and flint
texture, whose production is entirely utilized, as flour,
for human consumption. It represents a niche crop
with important social and economic significance for
local people. This landrace is actually grown on about
200-250 ha within an alluvial plain of about 1,000 ha
as a whole, situated in the low Chiese Valley, Province
of Trento, North-Eastern Italy, and enclosed within
mountain chains. Most farmers (66%) sows maize in
fields smaller than 1 ha while the rest of fields have an
area ranging from 1 to 5 ha. The total production of
maize meal has passed from 30 t of 1991 to the
current 300 t and its total market value from about
€15,000 to more than €500,000. As a matter of fact,
although still locally known and fully appreciated as
maize ‘polenta’, its demand shows a steady increase

due to the deeper attention that consumers pay to the
autochthonous, locally cultivated crops, usually
grown according to low-input agronomic practices,
and to their consciousness towards the current dual-
ism existing between conventional and novel foods.

The regional valorization of the landrace has great-
ly contributed to its on-farm conservation through the
continued cultivation and management by farmers in
the agroecosystem where it has evolved.

The flint maize germplasm cultivated at Storo has
originated from an ancient introduction grown in the
area since mid 18th century and belongs, with few
exceptions, to a single population.

The seed lot to be used for the next cropping season
is selected by each farmer from ears singled out from
his own harvest according to his own criteria of
correspondence to the ‘Nostrano di Storo’ standard
phenotype. This procedure is possible since harvest-
ing is still mostly made by hand and each farmer
carries out wind ear drying and stores his own seed
stock. Selection is made without control of the pollen
source or of the plant phenotype. According to far-
mers, the ears selected correspond to the ear ideotype
in terms of length, thickness, kernel size and colour
and so are the best well-developed ears and well-filled
kernels (without fungi or insect damage). Each farmer
usually applies a selection coefficient of 2.5 X 10",
That means a strong selective pressure which enabled
to maintain the population identity although sources
of contamination might have been present.

Although since the 1970s hybrids for silage have
been grown, the hand harvesting of the ears and the
criteria of ear selection have acted to limit the genetic
contamination and to preserve the phenotypic identity
of this landrace whose standard phenotype can be
described on the basis of distinctive and landrace-
specific traits.

Most populations required less than three months
from sowing to male and female flowering, even
though a proterandry of 4 days is present. The average
plant height for the landrace is 2.4 m, but plants up to
3 m can be frequently found. Despite the remarkable
plant height, the stalk diameter has a small size (17.4
mm) and this, with the high ear insertion, is one of the
factors responsible for the high incidence of broken
(1.66 m~?) and lodged (0.41 m~°) plants. A distinc-
tive trait is the ear insertion height which on average
is equal to 151 cm. The tassel primary branch habit is
moderately crooked and the leaf insertion shows quite
narrow angles. Across all populations a proportion of
plants varying between 5 and 20% shows red silks.
An ear length of about 17 cm, a thickness of 3.4 cm



and a number of 13.8 rows are the average distinctive
traits of ears as well as a length of apical sterility of
7.9 mm. Despite an average of 4.7% of barren plants,
the mean number of ears per plant is higher than 1 due
to some plants producing two or three ears. The yield
of landrace populations is on average of 4 t/ha. An
additional distinctive trait is that the 100 kernel
weight, although highly variable both within and
among populations, is as low as 16 g and thus much
lower than that of commercial hybrids (more than 27
9).

The incidence of the European corn borer attack in
the landrace population is less than 4%, but a high
susceptibility to corn smut seems to be one of the
main failures of the landrace, varying between 25 and
92% the proportion of infected plants.

Meal composition analysis revealed 10.4% of pro-
tein, 80.9% of carbohydrates, 5% of fat, 2.1% of
crude fibre and 1.6% of ashes.

Selection carried out over the years produced little
genetic differentiation within the original population.
In fact, the genetic variation was much higher within
than between populations: half of the quantitative
traits investigated did not show any significant differ-
ence among populations whereas all traits but two
showed highly significant differences within single
populations. This result agrees with theoretical ex-
pectations because on the basis of the breeding system
of maize, the genetic variability of the whole landrace
should be ample, distributed among individuals and as
large among as within populations. The low genetic
diversification among populations can be explained
by taking into account the gene flow among the
farmer’s fields which can likely have occurred
through both pollen dispersion and seed exchange
among farmers. This hypothesis is further supported
by the absence of correlation between genetic and
geographic distances (r = 0.095).

The high variability that can be found within each
population strengthen anyway the hypothesis that all
populations belong to the same landrace. These re-
sults would explain why local farmers do not dis-
criminate among their own populations.

The traditionally adopted management procedure
does not aim to prevent the sowing of hybrids in
contiguous areas to landrace populations. The land
owned and cultivated by each farmer is scattered all
over the whole area and is sown at each cropping
season without any physical isolation between local
populations and introduced varieties. Moreover, the
adoption of hybrids of different class and the uniform
planting date of landrace materials do not lead to a
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sufficient difference in flowering time to permit re-
productive isolation.

Gene contamination caused by pollen dispersal
from commercial hybrids may have occurred and may
still occur, but is seems it has been adequately con-
trolled through the selection made by farmers. Never-
theless, a certain level of genetic erosion of the
landrace may have occurred as the detectable genetic
differentiation of some of the farmer populations from
the landrace core seems to indicate. Populations that
were clustered separately from the core scored the
highest values of kernel yield (on average 4.21 t/ha
vs. 3.86 of the remaining populations). Moreover,
NSt11, clustered apart because of its highest mean
genetic distance, showed a kernel yield as high as 4.37
t/ha. The absolute value of kernel yield along with
evidences on the mealy rather than glassy fracture of
kernels suggest genetic introgression from commer-
cial varieties with important effects over the genetic
structure of the landrace.

Conservation of the genetic resources in the agro-
ecosystem in which they have evolved (in situ con-
servation) is now being more widely considered, as
complementary to strategies based on gene banks (ex
situ conservation), for limiting genetic erosion and so
preserving genetic diversity (Altieri and Merrik 1986;
Cohen et al. 1991). If it is true that in situ, on-farm,
conservation has been proposed essentially for wild
relatives of cultivated plants, it is also true that when
considered for major crops this alternative continues
to be highly polemic, unfeasible from a socio-econ-
omic perspective (Louette 1999). This does not seem
the case of the flint maize landrace ‘Nostrano di
Storo’ because of its economic importance as a mar-
ket niche which is the base of farmers’ interest. As
well this is true for some other landraces of different
crops in Italy, as suggested by Hammer and Perrino
(1995), Hammer et al. (1997).

Moreover, on-farm conservation of landraces is
seen as a dynamic system that could help maintaining
intact the technical, social, cultural and environmental
context in which they have occurred and evolved. In
view of this, the whole of morpho-phenological and
agronomic traits together with molecular markers
could be the basis for the recognition of a protected
geographic indication (IGP) mark of the landrace
which would further enhance not only its on-farm
conservation, but also its market value (Negri et al.
2000).

This is at present the case of the landrace ‘Nostrano
di Storo’. Would it become difficult to pursue this
strategy and would it be advisable to integrate it with
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ex situ conservation, populations NSt1, NSt3, NSt4,
Nst7, NSt10, NSt18, NSt19, NSt20, could be taken as
the core of the landrace. The ‘Nostrano di Storo’ core
has been identified on the basis of all statistical
analyses performed on ear and morpho-phenological
plant traits.

Replanting each variety from small samples of
seed, as in the case of ‘Nostrano di Storo’, theoret-
ically leads to a loss of alleles (Maruyana and Fuerst
1985). For an open pollinated plant as maize, the
theoretical work of Crossa (1989) has shown that a
seed lot formed from less than 40 ears i) does not
permit the conservation of alleles whose frequency in
the population is less than 3% (rare alleles), and ii) is
conducive to the loss of heterozygosity superior to 1%
when there are less than three different alleles per
locus. Thus, the use of reduced and variable quantity
of seeds could lead to the fluctuation of genetic
diversity and of its partition.

As a consequence, if farmers would manage the
reproduction of seed lots in isolation from each other,
the diversity of some seed lots could probably de-
crease due to an increase of inbreeding effect, leading
to a loss of production potential. So, gene flow is both
responsible for the creation, and necessary for the
restoration, of the genetic diversity of seed lots taken
from populations submitted to genetic drift associated
to their reduced size.

The traditional selection carried out annually by
farmers and the use of their own seed or of seed
acquired by other farmers has several practical impli-
cations in order to maintain: i) the distinctive mor-
phological traits of the landrace by singling out the
best ideotype-like ears; ii) the peculiar qualitative
characteristics of kernels to be used for making maize
‘polenta’; and iii) the level of distinctiveness even
when the pollen source is not controlled. Traditional
seed selection seems, therefore, to be an efficient
means of conserving the integrity of the ear charac-
teristics even though gene flow between local and
introduced materials can likely occur and lead to
fluctuation of genetic diversity that may be detectable
as additional variability of the landrace plant traits.

Although data reveal a large amount of diversity
with respect to several characters, the overall results
support the hypothesis that the selection operated by
farmers is effective for maintaining plant phenotype
identity of the landrace. As a matter of fact, the
‘Nostrano di Storo’ distinctive ear characteristics such
as number of rows per ear, length, thickness, weight
and colour can be maintained over the time owing to

their relatively high heritability. Knowledge of
heritability of morphological traits is fundamental for
planning conservation programs aimed at preserving
the distinctiveness of the landrace, as it influences the
effectiveness of selection and preservation of specific
traits.

At the plant level, it seems that modern varieties are
more a source of phenotypic diversity than a factor
inducing genetic erosion. In our case study, intro-
ductions had not resulted in a large shift effect on the
landrace. As indicated by Brush (1992), genetic ero-
sion may be a phenomenon that is too complex to be
captured in the equality ‘introduction of varieties =
loss of genetic diversity’. The magnitude of seed
exchange among farmers and pollen dispersal among
plantations makes possible the preservation of diversi-
ty of the landrace as a whole and explains the absence
of differentiation between landrace populations.

Maize landraces in general, and the landrace ‘Nos-
trano di Storo’ in particular, represent not only valu-
able autochthonous sources of potentially useful
traits, but also irreplaceable banks of highly co-
adapted genotypes. Information on its distinctive and
characteristic traits could be used to identify the core
farmer populations suitable to become the basic nu-
cleus for the maintenance of the ‘Nostrano di Storo’,
to plan on-farm conservation programs of this valu-
able Italian flint maize landrace and to recognize the
landrace as a unique germplasm source with specific
geographic origin.
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